Since version 0.5.0, statsmodels
allows users to fit statisticalmodels using R-style formulas. Internally, statsmodels
uses thepatsy package to convert formulas anddata to the matrices that are used in model fitting. The formulaframework is quite powerful; this tutorial only scratches the surface. Afull description of the formula language can be found in the patsy
docs:
Loading modules and functions¶
In [1]: import statsmodels.api as smIn [2]: import statsmodels.formula.api as smfIn [3]: import numpy as npIn [4]: import pandas
Notice that we called statsmodels.formula.api
in addition to the usualstatsmodels.api
. In fact, statsmodels.api
is used here only to loadthe dataset. The formula.api
hosts many of the samefunctions found in api
(e.g. OLS, GLM), but it also holds lower casecounterparts for most of these models. In general, lower case modelsaccept formula
and df
arguments, whereas upper case ones takeendog
and exog
design matrices. formula
accepts a stringwhich describes the model in terms of a patsy
formula. df
takesa pandas data frame.
dir(smf)
will print a list of available models.
Formula-compatible models have the following generic call signature:(formula, data, subset=None, *args, **kwargs)
OLS regression using formulas¶
To begin, we fit the linear model described on the GettingStarted page. Download the data, subset columns,and list-wise delete to remove missing observations:
In [5]: df = sm.datasets.get_rdataset("Guerry", "HistData").dataIn [6]: df = df[['Lottery', 'Literacy', 'Wealth', 'Region']].dropna()In [7]: df.head()Out[7]: Lottery Literacy Wealth Region0 41 37 73 E1 38 51 22 N2 66 13 61 C3 80 46 76 E4 79 69 83 E
Fit the model:
In [8]: mod = smf.ols(formula='Lottery ~ Literacy + Wealth + Region', data=df)In [9]: res = mod.fit()In [10]: print(res.summary()) OLS Regression Results ==============================================================================Dep. Variable: Lottery R-squared: 0.338Model: OLS Adj. R-squared: 0.287Method: Least Squares F-statistic: 6.636Date: Thu, 14 Dec 2023 Prob (F-statistic): 1.07e-05Time: 14:49:34 Log-Likelihood: -375.30No. Observations: 85 AIC: 764.6Df Residuals: 78 BIC: 781.7Df Model: 6 Covariance Type: nonrobust =============================================================================== coef std err t P>|t| [0.025 0.975]-------------------------------------------------------------------------------Intercept 38.6517 9.456 4.087 0.000 19.826 57.478Region[T.E] -15.4278 9.727 -1.586 0.117 -34.793 3.938Region[T.N] -10.0170 9.260 -1.082 0.283 -28.453 8.419Region[T.S] -4.5483 7.279 -0.625 0.534 -19.039 9.943Region[T.W] -10.0913 7.196 -1.402 0.165 -24.418 4.235Literacy -0.1858 0.210 -0.886 0.378 -0.603 0.232Wealth 0.4515 0.103 4.390 0.000 0.247 0.656==============================================================================Omnibus: 3.049 Durbin-Watson: 1.785Prob(Omnibus): 0.218 Jarque-Bera (JB): 2.694Skew: -0.340 Prob(JB): 0.260Kurtosis: 2.454 Cond. No. 371.==============================================================================Notes:[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
Categorical variables¶
Looking at the summary printed above, notice that patsy
determinedthat elements of Region were text strings, so it treated Region as acategorical variable. patsy
’s default is also to include anintercept, so we automatically dropped one of the Region categories.
If Region had been an integer variable that we wanted to treatexplicitly as categorical, we could have done so by using the C()
operator:
In [11]: res = smf.ols(formula='Lottery ~ Literacy + Wealth + C(Region)', data=df).fit()In [12]: print(res.params)Intercept 38.651655C(Region)[T.E] -15.427785C(Region)[T.N] -10.016961C(Region)[T.S] -4.548257C(Region)[T.W] -10.091276Literacy -0.185819Wealth 0.451475dtype: float64
Examples more advanced features patsy
’s categorical variablesfunction can be found here: Patsy: Contrast Coding Systems forcategorical variables
Operators¶
We have already seen that “~” separates the left-hand side of the modelfrom the right-hand side, and that “+” adds new columns to the designmatrix.
Removing variables¶
The “-” sign can be used to remove columns/variables. For instance, wecan remove the intercept from a model by:
In [13]: res = smf.ols(formula='Lottery ~ Literacy + Wealth + C(Region) -1 ', data=df).fit()In [14]: print(res.params)C(Region)[C] 38.651655C(Region)[E] 23.223870C(Region)[N] 28.634694C(Region)[S] 34.103399C(Region)[W] 28.560379Literacy -0.185819Wealth 0.451475dtype: float64
Multiplicative interactions¶
“:” adds a new column to the design matrix with the product of the othertwo columns. “*” will also include the individual columns that weremultiplied together:
In [15]: res1 = smf.ols(formula='Lottery ~ Literacy : Wealth - 1', data=df).fit()In [16]: res2 = smf.ols(formula='Lottery ~ Literacy * Wealth - 1', data=df).fit()In [17]: print(res1.params)Literacy:Wealth 0.018176dtype: float64In [18]: print(res2.params)Literacy 0.427386Wealth 1.080987Literacy:Wealth -0.013609dtype: float64
Many other things are possible with operators. Please consult the patsydocs to learnmore.
Functions¶
You can apply vectorized functions to the variables in your model:
In [19]: res = smf.ols(formula='Lottery ~ np.log(Literacy)', data=df).fit()In [20]: print(res.params)Intercept 115.609119np.log(Literacy) -20.393959dtype: float64
Define a custom function:
In [21]: def log_plus_1(x): ....: return np.log(x) + 1.0 ....: In [22]: res = smf.ols(formula='Lottery ~ log_plus_1(Literacy)', data=df).fit()In [23]: print(res.params)Intercept 136.003079log_plus_1(Literacy) -20.393959dtype: float64
Namespaces¶
Notice that all of the above examples use the calling namespace to look for the functions to apply. The namespace used can be controlled via the eval_env
keyword. For example, you may want to give a custom namespace using the patsy:patsy.EvalEnvironment
or you may want to use a “clean” namespace, which we provide by passing eval_func=-1
. The default is to use the caller’s namespace. This can have (un)expected consequences, if, for example, someone has a variable names C
in the user namespace or in their data structure passed to patsy
, and C
is used in the formula to handle a categorical variable. See the Patsy API Reference for more information.
Using formulas with models that do not (yet) support them¶
Even if a given statsmodels
function does not support formulas, youcan still use patsy
’s formula language to produce design matrices.Those matrices can then be fed to the fitting function as endog
andexog
arguments.
To generate numpy
arrays:
In [24]: import patsyIn [25]: f = 'Lottery ~ Literacy * Wealth'In [26]: y, X = patsy.dmatrices(f, df, return_type='matrix')In [27]: print(y[:5])[[41.] [38.] [66.] [80.] [79.]]In [28]: print(X[:5])[[ 1. 37. 73. 2701.] [ 1. 51. 22. 1122.] [ 1. 13. 61. 793.] [ 1. 46. 76. 3496.] [ 1. 69. 83. 5727.]]
y
and X
would be instances of patsy.DesignMatrix
which is a subclass of numpy.ndarray
.
To generate pandas data frames:
In [29]: f = 'Lottery ~ Literacy * Wealth'In [30]: y, X = patsy.dmatrices(f, df, return_type='dataframe')In [31]: print(y[:5]) Lottery0 41.01 38.02 66.03 80.04 79.0In [32]: print(X[:5]) Intercept Literacy Wealth Literacy:Wealth0 1.0 37.0 73.0 2701.01 1.0 51.0 22.0 1122.02 1.0 13.0 61.0 793.03 1.0 46.0 76.0 3496.04 1.0 69.0 83.0 5727.0
In [33]: print(sm.OLS(y, X).fit().summary()) OLS Regression Results ==============================================================================Dep. Variable: Lottery R-squared: 0.309Model: OLS Adj. R-squared: 0.283Method: Least Squares F-statistic: 12.06Date: Thu, 14 Dec 2023 Prob (F-statistic): 1.32e-06Time: 14:49:34 Log-Likelihood: -377.13No. Observations: 85 AIC: 762.3Df Residuals: 81 BIC: 772.0Df Model: 3 Covariance Type: nonrobust =================================================================================== coef std err t P>|t| [0.025 0.975]-----------------------------------------------------------------------------------Intercept 38.6348 15.825 2.441 0.017 7.149 70.121Literacy -0.3522 0.334 -1.056 0.294 -1.016 0.312Wealth 0.4364 0.283 1.544 0.126 -0.126 0.999Literacy:Wealth -0.0005 0.006 -0.085 0.933 -0.013 0.012==============================================================================Omnibus: 4.447 Durbin-Watson: 1.953Prob(Omnibus): 0.108 Jarque-Bera (JB): 3.228Skew: -0.332 Prob(JB): 0.199Kurtosis: 2.314 Cond. No. 1.40e+04==============================================================================Notes:[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.[2] The condition number is large, 1.4e+04. This might indicate that there arestrong multicollinearity or other numerical problems.
Last update: Dec 14, 2023